Search results for "electroluminescent devices"

showing 7 items of 7 documents

Charged Bis-Cyclometalated Iridium(III) Complexes with Carbene-Based Ancillary Ligands

2013

Charged cydometalated (CN) iridium(III) complexes with carbene-based ancillary ligands are a promising family of deep-blue phosphorescent compounds. Their emission properties are controlled primarily by the main CN ligands, in contrast to the classical design of charged complexes where NN ancillary ligands with low-energy pi* orbitals, such as 2,2'-bipyridine, are generally used for this purpose. Herein we report two series of charged iridium complexes with various carbene-based ancillary ligands. In the first series the CAN ligand is 2-phenylpyridine, whereas in the second one it is 2-(2,4-difluorophenyl)-pyridine. One biscarbene (:CC:) and four different pyridine carbene (NC:) chelators a…

DenticityLigandchemistry.chemical_elementCrystal structurePhotochemistryElectrochemistryEMITTING ELECTROCHEMICAL-CELLS; ELECTROLUMINESCENT DEVICES; IR(III) COMPLEXES; QUANTUM YIELDS; SOLID-STATE; BLUE PHOSPHORESCENCE; METAL-COMPLEXES; EXCITED-STATES; GREEN; COLORInorganic Chemistrychemistry.chemical_compoundchemistryPyridinePolymer chemistryIridiumPhysical and Theoretical ChemistryPhosphorescenceCarbene
researchProduct

Ligand-Based Charge-Transfer Luminescence in Ionic Cyclometalated Iridium(III) Complexes Bearing a Pyrene-Functionalized Bipyridine Ligand: A Joint T…

2012

Two new heteroleptic iridium(III) complexes [Ir(ppy)(2)(pyr(2)bpy)][PF(6)] ([1a][PF(6)]) and [Ir(dfppy)(2)(pyr(2)bpy)][PF(6)] ([2a][PF(6)]), where Hppy = 2-phenylpyridine, Hdfppy = 2-(3,5-difluorophenyl)pyridine, and pyr(2)bpy = 5,5'-bis(pyren-1-yl)-2,2'-bipyridine, have been synthesized and fully characterized. The single-crystal structures of pyr(2)bpy and the complexes 4{[1a][PF(6)]}·2CH(2)Cl(2)·9H(2)O and [2a][PF(6)]·0.25CH(2)Cl(2)·H(2)O have been determined. The effect of the pyrene substituents on the electronic properties is investigated through a comprehensive photophysical and theoretical study on the two complexes in comparison to reference complexes without substituents on the an…

ELECTROLUMINESCENT DEVICESAbsorption spectroscopyEMITTING ELECTROCHEMICAL-CELLSchemistry.chemical_element02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesInorganic ChemistryBipyridinechemistry.chemical_compoundPyridineCRYSTAL-STRUCTURESIridiumPhysical and Theoretical ChemistryCHELATED RUTHENIUM(II) COMPLEXEXACT-EXCHANGEChemistryLigand021001 nanoscience & nanotechnologyTRANSITION-METAL-COMPLEXES0104 chemical sciences3. Good healthCrystallographyPHOTOPHYSICAL PROPERTIESQUANTUM YIELDSIntramolecular forcePyreneEXCITED-STATE PROPERTIESSENSITIZED SOLAR-CELLS0210 nano-technologyLuminescenceInorg. Chem.
researchProduct

Photophysical Properties of Charged Cyclometalated Ir(III) Complexes: A Joint Theoretical and Experimental Study

2011

The photophysical properties of a series of charged biscyclometalated [Ir(ppy)(2)(N boolean AND N)](1+) complexes, where ppyH is 2-phenylpyridine and N boolean AND N is 2,2'-bipyridine (bpy), 6-phenyl-2,2'-bipyridine (pbpy), and 6,6'-dipheny1-2,2'-bipyridine (dpbpy) for complexes 1, 2, and 3, respectively, have been investigated in detail. The photoluminescence performance in solution decreases from 1 to 3 upon attachment of phenyl groups to the ancillary ligand. The absorption spectra recorded over time suggest that complex 3 is less stable compared to complexes 1 and 2 likely due to a nucleophilic-assisted ancillary ligand-exchange reaction. To clarify this behavior, the temperature depen…

ELECTROLUMINESCENT DEVICESPhotoluminescenceAbsorption spectroscopyEMITTING ELECTROCHEMICAL-CELLSLigandChemistryCATIONIC IRIDIUM COMPLEXESAnalytical chemistryLARGE MOLECULESTURN-ON TIMESTRANSITION-METAL-COMPLEXESInorganic ChemistryCONCENTRATION GRADIENTSReaction rate constantTEMPERATURE-DEPENDENCEQUANTUM YIELDSPhysical chemistryPhysical and Theoretical ChemistryENERGY-GAP LAWInorganic Chemistry
researchProduct

Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes

2012

We report new bis-cyclometalated cationic indium(III) complexes [((CN)-N-boolean AND)(2)Ir(CN-tert-Bu)(2)](CF3SO3) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluoropheny1)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or 5-trifluoromethyl) as (CN)-N-boolean AND ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or bluegreen phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-…

Ir(Iii) ComplexesIsocyanideCationic polymerizationchemistry.chemical_elementEmitting Electrochemical-CellsExcited-State PropertiesElectroluminescent DevicesPhotochemistryAncillary LigandsInorganic Chemistrychemistry.chemical_compoundchemistryExcited stateEfficient BlueIii ComplexesMetal-ComplexesEmission spectrumIridiumPhysical and Theoretical ChemistryPhosphorescenceLuminescenceTurn-On TimesPhotophysical PropertiesSolid solutionInorganic Chemistry
researchProduct

Operating Modes of Sandwiched Light-Emitting Electrochemical Cells

2011

Light-emitting electrochemical cells (LECs) are promising lighting devices in which the redistribution of ionic charges allows for double electronic carrier injection from air-stable electrodes. Uncertainties about the mode of operation are limiting the progress of these devices. Using fast (with respect to the current growth time) but resolutive electrical measurement techniques, the electronic transport mechanism in state-of-the-art sandwiched devices can be monitored as a function of the operation time. The results indicate the formation of doped transport layers adjacent to the electrodes that reduces the extent of the central neutral light-emitting layer where electronic transport is l…

Materials scienceDispositius optoelectrònicsbusiness.industryDopingLECsIonic bondingspace-charge limited currentOptoelectronic devicesCondensed Matter PhysicsSpace chargeLuminanceGrowth timeElectronic Optical and Magnetic MaterialsElectrochemical cellBiomaterialsÒptica integradaElectrodeElectrochemistryOptoelectronicsRedistribution (chemistry)businesselectroluminescent devicesAdvanced Functional Materials
researchProduct

Correlating the Lifetime and Fluorine Content of Iridium(III) Emitters in Green Light-Emitting Electrochemical Cells

2013

In light-emitting electrochemical cells, the lifetime of the device is intrinsically linked to the stability of the phosphorescent emitter. In this study, we present a series of ionic iridium(III) emitters based on cyclometalating phenylpyridine ligands whose fluorine substituents are varied in terms of position and number. Importantly, despite these structural modifications, the emitters exhibit virtually identical electrochemical and spectroscopic properties, which allows for proper comparison in functional devices. Quantum chemical calculations support the properties measured in solution and suggest great similarities regarding the electronic structures of the emitters. In electrolumines…

Materials sciencebusiness.industryGeneral Chemical EngineeringIonic bondingchemistry.chemical_elementGeneral ChemistrystabilityElectroluminescenceGreen-lightiridium emittersElectrochemical cellchemistryMaterials ChemistryFluorinePhysics::Accelerator PhysicsOptoelectronicsIridiumbusinessPhosphorescenceelectroluminescent devicesCommon emitterChemistry of Materials
researchProduct

Iridium(III) Complexes with Phenyl-tetrazoles as Cyclometalating Ligands

2014

Ir(II) cationic complexes with cyclometalating tetrazolate ligands were prepared for the first time, following a two-step strategy based on (i) a silver-assisted cyclometalation reaction of a tetrazole derivative with IrCl3 affording a bis-cyclometalated solvato-complex P ([Ir(ptrz)(2)(CH3CN)(2)](+), Hptrz = 2-methyl-5-phenyl-2H-tetrazole); (ii) a substitution reaction with five neutral ancillary ligands to get [Ir(ptrz)(2)L](+), with L = 2,2'-bypiridine (1), 4,4'-di-tert-butyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), and 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4), and [Ir(ptrz)(2)L-2](+), with L = tertbutyl isocyanide (5). X-ray crystal structures of P, 2, and 3 were solved. Elect…

Substitution reactionIr(III) complexePhenanthrolineIsocyanidechemistry.chemical_elementphenyl tetrazolesPhotochemistryMedicinal chemistryInorganic Chemistrychemistry.chemical_compoundBipyridinechemistryPyridineEMITTING ELECTROCHEMICAL-CELLS; TRANSITION-METAL-COMPLEXES; IR(III) COMPLEXES; ELECTROLUMINESCENT DEVICES; ANCILLARY LIGAND; SOLID-STATE; PHOTOPHYSICAL PROPERTIES; POLYPYRIDINE COMPLEXES; BLUE PHOSPHORESCENCE; ISOCYANIDE COMPLEXESTetrazoleIridiumPhysical and Theoretical ChemistryAcetonitrile
researchProduct